{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Correlation Analysis" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "各細胞の発火時系列が与えられたとき,2細胞の発火の時間的相関(temporal correlation)から,ネットワークの構造を推定することができる.\n", "\n", "本ノートブックでは,文献 {cite}`Kobayashi2019`で結合推定のデモデータとして使用されていた,ラット海馬のスパイクソーティング済みデータを用いる.元のデータの論文,データ詳細についてはCRCNSのホームページに記載されている. \n", "http://crcns.org/data-sets/hc/hc-3/about-hc-3" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from scipy.ndimage import gaussian_filter\n", "\n", "plt.rcParams['font.size'] = 12\n", "plt.rcParams['figure.dpi'] = 140" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | unit | \n", "spiketime | \n", "
---|---|---|
0 | \n", "0 | \n", "-99618.990000 | \n", "
1 | \n", "0 | \n", "-96536.180002 | \n", "
2 | \n", "0 | \n", "-95920.130002 | \n", "
3 | \n", "0 | \n", "-93842.150003 | \n", "
4 | \n", "0 | \n", "-92885.660004 | \n", "
\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"
\\n\"+\n \"